

#### Global Science Conference

March 16-18, 2015 Le Corum, Montpellier France

# Climate Change Impacts in Watershed Management, Forest and Agriculture in the Yautepec River Basin in Mexico Prof. Dr. Úrsula Oswald Spring Regional Centre for Multidisciplinary Research at National Autonomous University of Mexico (CRIM-UNAM)



Montpellier, March 16-18, 2015

# Content

- **1. Research theme and research question**
- **2.** Triple approach to the theme
  - 1. WG 2 of IPCC 2014: Chapter on Human Security
  - 2. Mexican Study: PINCC an integrated assessment report
  - 3. Regional assessment in a watershed highly exposed to climate change impacts
- 3. Triple impacts of climate change on watershed, forest, soil and agriculture
  - 1. Watershed and aquifer management
  - 2. Forests and soils
  - 3. Agriculture
- 4. Glocal impacts of climate change in the Yautepec River Basin
  - 1. Agriculture and watershed management in the Yautepec River
  - 2. Disaster management in the Yautepec River
- 5. Risks, mitigation and adaptation from bottom-up and top-down
- 6. Conclusion: integrated watershed management





# 1. Research theme and research question

Climate change-induced extreme events -especially storms, floods and droughthave increased during the past decades, creating threats to human life, wellbeing, productive processes, and infrastructure.

How could an integrated watershed management -including forestry agriculture, job creation and urban planning- enhance the resilience of highly exposed people -especially the vulnerable ones- to avoid negative effects of climate change?



# 2. Triple approach to the theme

- IPCC: global assessment on climate change 2013, 2014
- 2. PINCC: Mexican Assessment Report, 2015
- 3. Regional watershed assessment report, 2015



#### **Observed and projected temperatura** rise (IPCC, 2014: 10)



CLIMATE-SMART Agriculture 2015

#### **Risk Assessment**



## Disaster impacts (MunichRe, 2008)



#### Earthquakes



#### **Tropical Hurricanes**





#### Heat related deaths of people >65 years

WHO 2014:22





Population growth, rural/urban salaries in Mexico



#### Disaster impacts in Mexico (La Red 2014)





#### Disaster costs in Mexico (Cenapred 2013)



#### **River Yautepec: Centre of the country**



# Transect from volcano Popocatéptl (5,452 m) to the Sierra Madre del Sur





# 3. Triple impact of climate change on watershed, forest, soil, and agriculture



#### Systemic water management



#### Watershed management (Conagua, 2014)





#### Distrito Federal

CLIMATE-S

**Risks** 

1. High altitude from Popocatepetl to Yautepec: 5452m down to 1200m in 27 km High speed of water with rocks and trees Complex hydrology: with a lot of small rivers, often dried out and eroded Deforestation, also in national parks Soil erosion (80%) High sedimentation in river bed **Extreme rainfalls** Large drought periods 9. Invasion of the river basin oretos 10. Lack of infrastructure 11. Waste in the river 12. Lack of municipal planning 13. Initial cooperation among the three levels of government 14. Few participation of citizens

**Risks, threats and** disasters Floods: 1986; 1998; 2010 2011; 2012; 2014 **Droughts: every year** Cholera epidemics: 1992 Dengue fever: from 2005 on increase of 600% Chikungunya fever 4 floods 2014

# People, water and livelihood

Climate change impacts on watershed management: from the Pacific through the PopocatepetI to the Atlantic

#### IPCC assessment (2014: 9)





## **IPCC Climate change-related risks**

(IPCC, 2014: 13)





#### Degradation of soils due to anthropogenic impacts Source: ISCRIC-UNEP (1996: 12)



# **Coastal impacts in LA**





### **De/ Reforestation in LAC**







#### Animal diversity loss (IPCC, 2014: 15)



CLIMATE-SMART Agriculture 2015

# Projected crop yield changes (IPCC, 2014: 18)



CLIMATE-SMART Agriculture 2015

# Potential changes in annual precipitation in Mexico for 2050



2013

Scenario base (1961 – 1990) of average precipitation/year annual (mm/day)

% of changes in average annual precipitation depending on medium sensitivity. The interrupted lines represent decrease. Model ECHAM4

Conde C., 2006

#### Intrusion of salt water on soil/ aquifers



#### Land use change



2015

#### **Droughts**





#### Percentage of areas affected by droughts in Mexico

#### Sea level rise: 11,000 km of coast (Conagua 2013: 22)



#### Loss of food security (Siap 2013)



Agriculture 2015

# 54. Gocal impacts of climate change

## **Existing risks in the river bassin**





## **Forest management**





## Soil mangement





# Agriculture and watershed management in the Yautepec River



#### **Unsustainable water use**



#### Land tenure



# **Complexity of economic incomes**



# **Nonfarm incomes dominates**



#### **Multiple stressors**

Climate change Globalizations Technological change

#### Institutions such as:

- Social protection
- Relief organizations
- Disaster prevention





Food crisis Destroyed homes

# 4.3 Disaster management in the Yautepec River







## River Yautepec bassin risks and disaster management





5. Risks, mitigation and adaptation from bottom-up and top-down

### Dual vulnerability: poor and exposed to extreme events transformed into disasters Left: income less 2 US\$/day; right: Disaster costs over 500,000US\$



#### **Dual vulnerability**



#### **OECD** wellbeing conceptual framework

2013



Agriculture

# Complex factors & levels of environmental induced migration



2015 🔪

## **Environmental perception**

|                      | Environmental<br>understanding |  |  |
|----------------------|--------------------------------|--|--|
| Lorenzo Vázquez      |                                |  |  |
|                      | 62.6%                          |  |  |
| Villa Nicolás Zapata |                                |  |  |
|                      | 75.8%                          |  |  |
| La Cañada            |                                |  |  |
|                      | 59.0%                          |  |  |
| El Pañuelo           |                                |  |  |
|                      | 56.3%                          |  |  |
| IMATE-SMART          |                                |  |  |

Agricultu 2015

# Index of social and environmental vulnerability

| Both indexes                            | Lorenzo<br>Vázquez | Nicolás<br>Zapata | La<br>Cañada | El<br>Pañuelo |
|-----------------------------------------|--------------------|-------------------|--------------|---------------|
| Index of social<br>vulnerability        | 253.12             | 263.8             | 202.58       | 290.11        |
| Index of environmental perception       | 273.4              | 286.6             | 220.3        | 307           |
| Diferences in %<br>between both indexes | 8.01               | 8.64              | 8.75         | 5.82          |



# Adaption without migration?

100

itté de Cuenca del

## Obstacles to a dignified livelihood without migration



2015

Culture

# **Economic deadlocks in Cochoapa**



#### Without school training



- 1. Poorest municipality in Mexico
- 2. 82.6% extreme poor
- 3. 98% indigenous
- 4. 56.8% analphabets
- 5. 70% of women without school
- 6. Studying prevents marriage
- 7. Girls at 12 years are sold for marriage
- Temporary and permanent migration: Day laborers & family in the fields with toxic pesticides (including children)

#### Discrimination: Poor, woman, indigenous and migrant

## **Educational backwardness**



## **Culture and traditions**





**Climate stress** 

(

# 6. Conclusion: integrated watershed management





#### **Glocal** Primary Actors

#### INTERNATIONAL

- Bilateral and multilateral partners
- Intergovernmental organizations

#### NATIONAL / SUB-NATIONAL

- National government and statutory agencies
- Civil society organizations
- Private sector
- Research and communication bodies
- Local government agencies

#### LOCAL

- Individuals, households, and communities
- Private sector
- Community-based organizations
- Faith-based organizations



# Integration of epistemic communities (IPCC: 26)



2015

# **Opportunity spaces** (IPCC: 29)





CLIMATE-SMAF Agricultur 2015

# **Glocal integrated management**



CLIMATE-SMART Agriculture 2015



#### Thank you for your attention www.afes-press.de/html/downlod\_oswald.html